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Abstract

We introduce expressive range coverage analysis (ERaCA): a technique for evaluating mixed-initiative creative interfaces
(MICIs) in which creative responsibility is shared between a human user and a generative model. ERaCA revolves around
the examination of a small number of human-created artifacts in the context of a visualization of the broader expressive
range from which these artifacts were sampled. As a pilot study of our approach, we apply ERaCA to the evaluation of
Redactionist—a MICI for erasure poetry creation—and find that ERaCA allows us to visually answer questions about how
thoroughly users explore the underlying model’s expressive range; whether users produce artifacts that are typical or unusual
from the underlying model’s perspective; whether different users of a single MICI tend to produce similar or different artifacts;
whether a MICI tends to promote divergent or convergent thinking; and how a single user’s artifacts evolve as they continue

to use a MICI over time.
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1. Introduction

Mixed-initiative creative interfaces [1, 2], or MICIs, are
a genre of creativity support tools [3] in which creative
responsibility is shared between a human user and an
artificially intelligent system. Many MICIs consist of two
layers: an underlying generative model that defines a
possibility space of artifacts—sometimes learned from a
corpus of training data [4], sometimes defined by a set of
rules or constraints [5]—and a supervening mechanism
for navigating this space to locate artifacts that match a
user’s prompt or intent. In MICIs that take this approach,
an artifact’s creation is synonymous with its discovery
and selection by a user.

Evaluating the effectiveness of these systems can be
difficult, in part because neither the user nor the gen-
erative model is solely responsible for the artifacts pro-
duced [6]. In particular, a skilled user may be able to
coax compelling artifacts from even the most unwieldy
MICI, making it difficult to characterize how effectively
a MICI supports its users in realizing their creative goals.
Additionally, insofar as these tools often lead users to cre-
ate artifacts that they would not have thought to create
before, it is difficult to compare a MICI-plus-user system
with the unassisted user in terms of creative capabilities,
because the user’s original creative intent can be substan-
tially shaped or modified by their interaction with the

Joint Proceedings of the ACM IUI Workshops 2022, March 2022,
Helsinki, Finland

& mkremins@ucsc.edu (M. Kreminski); ikarth@ucsc.edu (I. Karth);
mmateas@ucsc.edu (M. Mateas); nwardrip@ucsc.edu

(N. Wardrip-Fruin)

aan
my

& https://mkremins.github.io (M. Kreminski)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
- Commons License Attribution 4.0 International (CC BY 4.0)

C 71 CEUR Workshop Proceedings (CEUR-WS.org)

tool. As a result, assessments of MICIs often focus on
evaluating the subjective perception of creativity support
from the user’s perspective [6]. The artifacts that users
produce are comparatively rarely evaluated, and even
when they are evaluated, discerning what role the MICI
played in shaping these artifacts may still be out of reach.

Though evaluating creativity is difficult in general [7],
researchers have developed a number of effective ap-
proaches to the evaluation of computationally creative sys-
tems [8, 9] in which creative responsibility is attributed
primarily or solely to the machine [10]. In particular, a
technique known as expressive range analysis (ERA) [11]
can be used to characterize the behavior of a generative
model by visualizing its possibility space. This makes
it easy to visually compare the expressive range of dif-
ferent generative models that produce the same kind of
artifact—and to describe a generative model in terms of
its grain, or the characteristics of the artifacts that it tends
to produce [12].

However, because ERA relies on the rapid genera-
tion and characterization of a very large number of ar-
tifacts [13], this method of evaluation cannot straight-
forwardly be applied to mixed-initiative creative collab-
orations. When a human user must be involved in the
production of every artifact, it becomes prohibitively
time-consuming to produce the hundreds or thousands
of artifacts that ERA demands. As a result, although
ERA is frequently applied to the evaluation of end-to-end
computationally creative systems, including the genera-
tive models underlying some MICIs [14], its application
to understanding the influence of MICI design on user
behavior and user experience has remained limited.

In this paper, we propose a new technique for evaluat-
ing MICIs—expressive range coverage analysis (ERaCA)—
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that extends ERA to a co-creative context by visualizing
a small number of co-created artifacts in the context of
the broader expressive range from which these artifacts
were sampled. ERaCA applies a set of quantitative arti-
fact evaluation metrics to the simultaneous assessment of
many model-created artifacts and a handful of co-created
artifacts, then produces a visualization of the results, al-
lowing us to visually answer such questions as:

« Does a MICI allow its users to access the entirety
of the underlying generative model’s expressive
range, or only a limited subset?

« How typical or unusual are the artifacts created
by a user in the context of the broader expressive
range?

« Are all of a MICT’s users drawn toward the same
parts of its expressive range, or do different users
typically explore different regions of the possibil-
ity space?

« As users continue to interact with a MICI, do the
artifacts they produce tend to get closer together
or further apart within the expressive range? In
other words, does the MICI tend to promote con-
vergent or divergent thinking?

+ More generally, as users continue to interact with
a MICI, what trends appear in a single user’s arti-
facts over time?

We demonstrate ERaCA via a pilot study in which we
apply the ERaCA method to the evaluation of Redaction-
ist, a MICI for erasure poetry creation. The resulting
visualizations provide preliminary answers to several of
the above questions based on data collected from a small
number of users. Altogether, the argument for our ap-
proach can be summed up as follows: we learn more
about a MICI from inspecting co-created artifacts in
the context of the underlying expressive range than
we do from inspecting both co-created artifacts and
the underlying expressive range individually.

2. Background

Expressive range analysis (ERA) [11] is a visualization-
based approach to understanding and evaluating the ef-
fectiveness of generative models. Application of ERA
follows a four-step approach:

1. Determine appropriate quantitative metrics
for the kinds of artifacts that the generative model
will produce. Ideally these metrics are computa-
tionally inexpensive to evaluate, so that they can
be efficiently applied to a large number of indi-
vidual artifacts.

2. Generate a large number of artifacts using
the generative model to collect a representative
sample of the model’s output, using the metrics
defined in step 1 to evaluate each artifact.

3. Visualize the results of evaluation, typically
as a set of two-dimensional histograms in which
pairs of metrics are plotted against one another
to showcase artifact density in different “slices”
of the overall expressive range.

4. Analyze the impact of parameters passed to
the generative model on the resulting expressive
range, allowing for the visual determination of
how different parameters influence the artifacts
that the model produces.

Although ERA has been integrated into tools for hu-
man creators of generative models [15], extended in
various ways [13, 16], and applied to domains as wide-
ranging as emergent narrative [17] and road network
generation [18], it has several important limitations. In
particular, conventional ERA is data-hungry and poorly
suited to the evaluation of small numbers of artifacts,
which has prevented its application to creative contexts
in which artifacts are individually time-consuming or
costly to generate [13]—as is often the case when human
users are involved in the creative process.

However, the ideas captured by ERA remain important
to the evaluation of tools for human-AlI creative collab-
oration. Among nine potential pitfalls for co-creative
systems discussed by Buschek et al. [19], at least five (“In-
visible Al boundaries”, “Lack of expressive interaction”,
“Agony of choice”, “Time waster”, and “Al bias”) can be
viewed as stemming from either an insufficiently wide ex-
pressive range; an expressive range that does not overlap
well with user desires; or a flawed user interface for ac-
cessing the available expressive range. Evaluations based
exclusively on self-reported subjective user experience
can produce misleading results [20], leading some to sug-
gest that inspection of co-created artifacts is also needed
to arrive at a holistic picture of a co-creative system’s
success or failure [21, 22, 23, 24]—but even these hybrid
evaluations cannot clearly diagnose whether a MICI’s
weaknesses are due to the underlying generative model
or the interface through which the model is accessed.
And some studies of user behavior in MICIs have sug-
gested that some users are motivated by a drive to explore
the extremes of a MICI’s expressive range [25], neces-
sitating the comparison of co-created artifacts against
the expressive range to verify these findings. In sum,
these difficulties all point to a common unmet need: an
evaluation method for MICIs that can illuminate the rela-
tionship between individual co-created artifacts and the
MICT’s overall expressive range.



3. Expressive Range Coverage
Analysis

Expressive range coverage analysis (ERaCA) is a new
evaluation technique for mixed-initiative creative inter-
faces (MICIs) in which a human user and a generative
model share creative responsibility for the discovery and
selection of artifacts from a large possibility space. ER-
aCA builds on ERA, but also extends the evaluation pro-
cess by incorporating the solicitation and examination of
a small number of co-created artifacts (i.e., artifacts made
or discovered by human study participants through their
interaction with the MICI) in the context of the genera-
tive model’s expressive range.
ERaCA as a process consists of seven steps:

1. Determine appropriate quantitative metrics for
the kinds of artifacts that the generative model
will produce.

2. Generate a large number of artifacts using the
generative model, and evaluate each artifact using
the metrics defined in step 1.

3. Visualize the results of evaluation.

4. Solicit the co-creation of a small number of
artifacts by human study participants, ideally
drawn from among the MICI’s target user base,
and evaluate these artifacts using the same met-
rics that are used to evaluate the purely machine-
created ones.

5. Visualize the location of co-created artifacts
within the context of the larger possibility space,
for instance as a set of scatterplots drawn directly
on top of the two-dimensional histograms created
in step 3.

6. (Optional) Construct per-user visualizations
of the user’s trajectory within the possibil-
ity space, using a color gradient to indicate the
order in which artifacts were created on the plot.
We discuss this visualization approach in greater
detail in section 5.4, and an example can be seen
in Figure 6.

7. Visually analyze the results to make determi-
nations about users’ coverage of and trajectory
within the generative model’s possibility space.

Steps 1-3 of this process are the same as for ERA, while
steps 4-7 (which rely on incorporation of co-created arti-
facts into the evaluation process) are unique to ERaCA.

4. Pilot Study Procedure

In preparation for a larger-scale user study to be con-
ducted in the future, we ran a small-scale pilot study to
test and illustrate our approach. Our pilot study used the
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Figure 1: A screenshot of the Redactionist user interface
(taken from [26]), showing a partly constructed erasure poem.
Words that cannot be used together with the currently selected
words are blacked out; words that can be selected are covered
by purple boxes, but revealed when the user hovers over them;
and selected words are displayed as uncovered text. The user
can click on any selected word to unselect it, or on any purple-
highlighted word to select it and add it to the poem.

ERaCA method to evaluate the mixed-initiative erasure
poetry creation tool Redactionist on the basis of artifacts
created by four participants (all coauthors of this paper)
from a single fixed paragraph of source text.

4.1. Redactionist

Redactionist [26], previously known as Blackout [27], is a
browser-based' casual-creator [28] MICI that helps users
create English-language erasure poetry by interactively
removing most of the words from a user-provided source
text. Once given a source text, Redactionist uses a rules-
based generative model (adapted from an earlier model
created by Liza Daly [29]) to generate a large number
of potential erasure poems that could be created from
the text. Then it provides the user with an interface
for navigating this space of potential poems by toggling
whether specific words should be present in the final
poem. A screenshot of Redactionist’s interface, showing
a half-constructed poem, can be seen in Figure 1.

Given a source text, Redactionist’s rules look for poems
that take the form of several short and grammatically cor-
rect declarative sentences—one sentence per paragraph of
input text. For instance, one of Redactionist’s rules—the
grammatical pattern ARTICLE NOUN VERB ARTICLE
ADJECTIVE NOUN—would find and match sequences of
words such as “the poem conceals an elusive metaphor”
within a paragraph of source text, with any other words
in the source text paragraph being erased. The words in
each matched sentence might be separated by any num-
ber of other words, as long as they occur in the correct
sequence within a single paragraph of the source text.
The version of Redactionist used here contains 136 rules,
each of which matches sentences of a particular form.

!https://mkremins.github.io/blackout/interactive
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4.2. Data Collection

Due to logistical constraints (described further in section
6.1), the four coauthors of this paper served as our pilot
study participants. Each participant was instructed to use
Redactionist with a fixed source text (a one-paragraph
excerpt from a transcript of a talk by Allison Parrish on
computational poetry [30]) to create a sequence of ten
short erasure poems. To ensure that participants were
not composing their poems with a particular metric or
evaluation criterion in mind, we avoided deciding what
metrics would be used to evaluate the poems until after
the data had been collected, and we did not confer with
one another about our aesthetic intentions for the poems
we had made.

In addition to these 40 co-created poems, we also gath-
ered and analyzed the complete set of 57,195 potential
poems that the Redactionist generative model considers
to be possible erasures of the fixed input text. This larger
set of poems, which we call the “full poemspace”, forms
the backdrop for our analysis: by comparing the 40 co-
created poems to the full poemspace, we can identify the
co-created poems as typical or atypical in various ways
and analyze the extent to which the co-created poems
cover (or fail to cover) the full poemspace. For some gen-
erative models, it may be easier to instead establish a
backdrop set of artifacts by uniformly sampling many
(but not all) possible artifacts for the given user input;
the details of this sampling vary depending on how the
generative model is implemented.

4.3. Artifact Evaluation Metrics

ERaCA, like ERA, uses several domain-specific quantita-
tive metrics to characterize each of the artifacts produced
by a generative model or creative collaboration. Erasure
poetry is an unusual form of poetry that has not been
investigated much in the scholarly literature [31, 32, 33],
and the short, single-declarative-sentence poems pro-
duced by Redactionist given a single paragraph of input
text do not contain many of the features (such as end
rhyme) that are most widely studied in the analysis of
poetry. Consequently, rather than drawing directly on
metrics that have been defined for more conventional
forms of poetry [34], we instead defined several prelim-
inary but easy-to-implement metrics of our own that
attempt to capture key aesthetic features of erasure po-
etry as a form. These metrics include:

Average word position within the source text. Era-
sure poems are characterized partly by the visual spacing
of the non-erased words within the source text. Since
Redactionist represents poems internally as a set of nu-
merical indexes into the source text pointing to the user-
selected words, averaging these indexes together can
give a simple approximation of whether a poem mostly

contains words taken from near the start, middle, or end
of the source text.

Distance between the poem’s first and last words
within the source text. This metric can be used to differ-
entiate poems that draw exclusively from one narrow re-
gion within the source text from poems that draw from a
larger span. It is especially useful when applied alongside
the previous metric to identify where in the source text
the user focused their attention when selecting words to
retain.

Poem length in characters. This metric counts the
total number of characters in the selected words that
comprise the poem. Many erasure poems attempt to
visually overwhelm the reader with the sheer amount of
text that is erased [33]; counting non-erased characters
relative to a fixed source text length works as a loose
proxy for the proportion of the source text that is erased.

Average English-corpus word frequency of the
words selected for inclusion in the poem. This metric
attempts to quantify how unusual a given poem’s word
choices are in the context of the English language as a
whole, under the logic that retained words in erasure
poems are often chosen with the intent to surprise the
reader. For English word frequency data, we used the
SUBTLEXuys dataset of film and television subtitles [36]—
specifically the word frequency per 1,000,000 words mea-
sure (SUBTLwr), as given by the file that contains word
frequency data for all 74,286 distinct words that appear
within the dataset.

Average within-poemspace word frequency of the
words selected for inclusion in the poem. This metric
attempts to quantify how unusual a given poem’s word
choices are in the context of the complete poemspace, with
each word’s frequency determined by counting how often
it appears in the complete set of poems that the genera-
tive model is able to create from this source text. Because
the meaning of an erasure poem is partly defined in rela-
tion to the meaning of its source text [31], including the
alternative erasures of the same source text that might
have been performed, it makes sense to consider the in-
dividual poem’s relationship to the full poemspace as a
potential aesthetic measure.

Average word pair probability within the poemspace
across all word pairs in the poem. The probability of a
word pair (a, b) is the probability that, given word a is
present in a poem, word b is also present within that
same poem. Like the word frequency metrics, this met-
ric attempts to capture the surprising quality of word
choices in many human-created erasure poems; here, it
is particularly useful for identifying poems that contain
pairs of words that the generative model would not often
use together when unguided by a human user.

Letter repetition score. This metric counts all of the
unique letters in a poem and divides this count by the
total number of letters in the poem. Poems receive a low



avgWordPairProb avgPoemspaceWordFreq avgEnglishWordFreq poemLengthinChars distBetweenFirstAndLastWords

letterRepetitionScore

avgWordPosition distBetweenFirstAndLastWords poemLengthinChars

avgEnglishWordFreq avgPoemspaceWordFreq
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Figure 2: A corner plot [35, 13] summarizing all of the metric pairs we used to evaluate erasure poems. A black-and-white
histogram showing the shape and density of the generative model’s expressive range forms the background of each individual
plot, while co-created artifacts are drawn as a scatterplot layer on top of this background. Each participant’s artifacts are

indicated in this and subsequent scatterplots by a participant-specific color: P1,

score if they reuse the same letter many times, and a
high score if they reuse letters infrequently. This score
is intended as a loose proxy for sound reuse, an aesthetic
quality of poems related to how similar the words in the
poem sound to one another when pronounced. Sound
devices [34] such as assonance, consonance, alliteration,
and rhyme are all varieties of sound reuse. Low letter
repetition scores may indicate intentional selection of
words that sound similar to one another, while very high

, P3, P4.

letter repetition scores may indicate intentional selection
of words that phonetically clash.

We also defined minimum and maximum variants of
each metric that reports an average value—for instance,
metrics that report the probability score of the most and
least likely word pairs in each poem, to accompany the
metric that reports the average probability of all of a
poem’s word pairs. However, for reasons of space, we do
not report results related to these metrics here.



4.4. Data and Code Availability

All data for this study (including the participant-created
poems and the full poemspace), as well as the code that
we used to run the analysis and generate our visualiza-
tions, is available online: https://github.com/mkremins/
redactionist-eraca.

5. Results and Discussion

Examination of the visualizations we created allows us
to characterize Redactionist’s effects on users in terms of
the artifacts they tend to create. Below, we briefly discuss
some of the key findings from our pilot study.

5.1. Users collectively explore most of the
model’s expressive range

At a high level, inspection of the metric pair visualiza-
tions in the corner plot (Figure 2) shows that the four
participants collectively created artifacts that cover the
generative model’s expressive range well. Although the
densest clusters of co-created artifacts within the possi-
bility space mostly do not align with the densest clusters
of possible machine-generated artifacts, the placement of
co-created artifacts across the possibility space suggests
that users are capable of creating poems that occupy any
point within the generative model’s expressive range as
defined by these metrics. This provides evidence that the
Redactionist interface is successful at exposing the full
possibility space of the underlying generative model to its
users: no regions of the possibility space are inaccessible
to users due to interface limitations.

A particularly good example of expressive range cover-
age can be seen in the visualization of the poemLength-
InChars and avgEnglishWordFreq metric pair (Fig-
ure 3). Although co-created poems largely fall outside of
the densest parts of the possibility space, and although
some co-created poems stand out as extreme outliers
relative to the possibility space as a whole, the overall
distribution of co-created artifacts shows that users can
access the entirety of the possibility space.

5.2. Co-created artifacts are
disproportionately unusual

Further inspection of the corner plot (Figure 2) shows that
co-created artifacts rarely occupy the densest parts of the
generative model’s expressive range, and that they are
unusually likely to be outliers in comparison to most pos-
sible model-created poems. This is backed up by closer
examination of individual metric pairs: for instance, Fig-
ure 4 shows that co-created artifacts are much more likely
than model-created artifacts to contain unusual individ-
ual words and word pairs (from the model’s perspective).

avgEnglishWordFreq

poemLengthinChars

Figure 3: A single expressive range coverage visualization
highlighting the artifacts created by four participants on top
of a histogram showing the complete expressive range for this
metric pair. Participants covered the expressive range well, but
the density of co-created artifacts does not follow the density
of the underlying possibility space.

avgWordPairProb

0005 0010 0015 0020 0025 0030 0035 0040

avgPoemspaceWordFreq

Figure 4: A visualization showing that, for one metric pair,
co-created artifacts do not seem to follow the “center of mass”
for the generative model’s expressive range as a whole: in fact,
they seem to avoid it.

This may suggest that the generative model’s expressive
range contains many poems that human users would tend
to reject as unsuitable, leading to a focusing of human
attention on poems that are considered to be outliers.
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distBetweenFirstAndLastWords
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Figure 5: A visualization illustrating differences in user behav-
ior. One participant (P4) primarily selected words from near
the start of the source text; one (P1) primarily selected words
from near the end; one (P2) primarily created poems that
spanned a very large proportion of the source text; and one
(P3) created poems using words from throughout the source
text, but maintaining a relatively small “window of attention”
within the source text for each poem.

5.3. Different users explore different
portions of the expressive range

We can also see from the corner plot (Figure 2) that differ-
ent users tend to explore different portions of the expres-
sive range. Each participant’s co-created artifacts tend
to cluster together, allowing for the visual determination
of each participant’s “style” in terms of the metrics we
defined. Figure 5 shows this especially well: the visual
clustering of poems created by each participant is highly
evident here, suggesting that each participant tended to
behave differently when deciding where in the text they
should select words from. Participants P1, P3, and P4
all tended to pick a relatively narrow “window” within
the source text and construct poems from several close-
together words, but P4 tended to draw from near the
start of the source text; P1 tended to draw from near the
end; and P3 moved throughout the source text while still
selecting mostly close-together words for each individ-
ual poem. Meanwhile, participant P2 tended to create
poems that drew words from all throughout the source
text, resulting in unusually high distBetweenFirst-
AndLastWords scores relative to the other participants.

Artifact creation order
o

avgPoemspaceWordFreq
|

avgWordPosition
(P1)

Figure 6: A trajectory visualization illustrating one partici-
pant (P1)’s gradual convergence on selecting words from a
particular part of the source text (toward the end) and on
selecting words that rarely appear in model-produced poems.

5.4. Redactionist tends to promote
convergent thinking over divergent

One question that it would be useful to answer about
MICIs involves the tendency of the MICI’s design to pro-
mote divergent or convergent thinking within a single
user: do users tend to jump around between very differ-
ent regions of the possibility space, or do users tend to
select a single region of the possibility space and then
“mine it out” by creating several artifacts all drawn from
that same region? This question can be answered to some
extent with a standard scatterplot overlay, but coloring
the points representing a single user’s artifacts in the
order that these artifacts were created (according to a
color gradient) can further enable us to discern whether
artifacts drawn from a particular region of the possibility
space were created contiguously or noncontiguously. We
call these augmented scatterplots “trajectory visualiza-
tions”, because they attempt to illuminate a single user’s
trajectory through the possibility space over time; an
example trajectory visualization can be seen in Figure 6.
Side-by-side per-user trajectory visualizations for the
avgWordPositionanddistBetweenFirstAndLast-
Words metrics (Figure 7) shows that Redactionist users
tend to converge on a specific approach to selecting
words from the source text for inclusion in poems, es-
sentially choosing a “home region” within the source
text that they repeatedly revisit for multiple poems over
the course of a single session. Specifically, by examining
the order in which poems were created alongside their
positioning within the expressive range, we can see that
all four participants created at least three poems that
fall within a visually distinct region of the expressive
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Figure 7: A set of four trajectory visualizations (one for each participant) illustrating the tendency of participants to converge
on a single “home” region within the source text and repeatedly return to this region for multiple poems within the course of a
single session. For instance, P2 repeatedly revisits a cluster in the upper center of the distribution throughout their session,

alternating between exploration of this region and farther-flung alternatives.

range from a source text location perspective; that two
of these participants (P2 and P4) created an even larger
number of poems sampled largely from similar locations
within the source text; and that these poems were not
created in immediate sequence with one another, indi-
cating that the user’s preference for a particular “home
location” endures over the course of a session rather than
disappearing after a few successive poems are sampled
from the same region.

The tendency of Redactionist users to work conver-
gently may be partly attributable to interface design. In
Redactionist, once you have locked in a large number
of words to finish a poem, it is easier to change only a
few of these selections than to change a large number of
them at once. Additionally, the actual word attached to a
span of selectable text is not made visible to users until
they hover over this span. Consequently, users often take
small, incremental steps within the possibility space and
less frequently make the large jumps needed to switch
from one region of the space to another—and even when
they do make larger jumps, they tend to anchor their
jumps on potentially selectable words that they had used
in poems previously. Insofar as these behaviors are at-
tributable to the user’s inadvertent fixation on a narrow
region of the expressive range rather than intentional
commitment to certain design choices [37], this analysis
suggests the possibility of user interface features that
deliberately encourage users to work divergently: for
instance, an option to randomly select a new set of words
containing none of the words that are currently selected,
or a process that randomly highlights a nearby selectable
word that a user has not yet used in any poems.

5.5. Users experiment with highly
unusual word choices before
regressing to the mean

We hypothesized that, as users are exposed to more of
the generative model’s choices and explore a wider vari-
ety of the words available to them, they might be driven
toward selecting more unusual words over time—both
from the perspective of the Redactionist poemspace (i.e.,
avoiding words that tend to be used very frequently in
generated poems) and from the perspective of the En-
glish language as a whole (i.e., preferring words that
occur less frequently in a corpus of general English us-
age). Examination of trajectory visualizations for the
avgPoemspaceWordFreq and avgEnglishWordFreq
metric pair, however, does not show this expected trend—
see Figure 8. Instead, we observe that all four participants
at some point during their session experimented with the
selection of highly unlikely words, but that no partici-
pant remained consistently focused on the selection of
highly unlikely words afterward.

In particular, in the bottom left-hand corner of their
respective trajectory visualizations, we can see that three
of four participants (P2, P3 and P4) all discovered a region
of poemspace in which the poems contain words that are
highly unlikely from both a poemspace word frequency
and English word frequency perspective. Each of these
participants created two poems within this region of po-
emspace; for P2 and P4 one of these poems was created
shortly after the other, while for P3 these poems were sep-
arated in time by several others. However, none of these
participants’ penultimate or final poems fall within this
region, suggesting that none of these participants were
primarily attempting to optimize for surprising word
choice over the course of their session.

This may be an instance of the curiosity-driven behav-
ior previously observed in some MICT users [25]: deliber-
ate probing of the MICI in an effort to discover the edges
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Figure 8: A set of four trajectory visualizations (one for each participant) illustrating the tendency of participants to create a
few poems containing highly unusual words at some point during their session, before eventually regressing to the mean.

of the possibility space. This explanation may also help
to explain why P4’s final poem in particular is visibly an
extreme outlier on the avgPoemspaceWordFreq met-
ric, containing much more common English words on
average than any other co-created poem: all of the par-
ticipants were driven by curiosity to some extent, but P4
was especially successful in probing the extreme corners
of the possibility space.

6. Limitations

6.1. Pilot Study Limitations

Our four participants for the ERaCA pilot study presented
here were all members of this paper’s authorship team.
We took this unusual approach because obtaining IRB ap-
proval for collection of user data at scale was not possible
prior to the workshop submission deadline, due partly
to the late-breaking nature of this work and partly to
ongoing pandemic-related IRB reviewing backlogs. The
small number of participants limits generalizability of the
study’s results, and there was obviously an incentive for
authors to try to “behave interestingly” while using the
MICI so that publishable results would emerge. We tried
to mitigate this potential source of bias (in particular by
avoiding selection of poem evaluation metrics until after
the data collection was complete), but this attempt at es-
tablishing a firewall between data collection and analysis
is clearly imperfect. In the near future, we plan to run a
larger user study (with a larger number of non-coauthor
participants) to validate and expand on our findings. In
the meantime, however, because the primary goal of this
paper is to introduce the idea of expressive range cov-
erage analysis and present a minimal case study of its
application, we believe that our pilot study results are
sufficient to illustrate the methodology.

6.2. Visualization Limitations

The visualizations that we presented here use only color
to indicate which user created each artifact (in multi-
user visualizations) and the order in which artifacts were
created (in single-user trajectory visualizations). This
limits the accessibility of these visualizations to users
who have difficulty perceiving color [38]. Future work
should explore the use of shape, pattern, or another re-
dundant visual channel alongside color in the co-created
artifacts visualization layer. Particularly for trajectory
visualizations, we suspect there may be value in shap-
ing each data point as a small arrowhead pointing in
the direction of the next data point in sequence, so that
the order in which a user created their artifacts can be
visually analyzed more easily.

6.3. Limitations of ERaCA as a Method

Like ERA, ERaCA is a qualitative and visual evaluation
technique. It is not capable of producing a single sum-
mary value that tells you how good a MICI is—but it does
illuminate the MICI’s influence on users and co-created
artifacts in useful ways, especially when the information
that ERaCA provides is considered in terms of the MICI's
overall goals. It may be the case that ERaCA is best em-
ployed alongside other user-centered evaluation methods,
such as the think-aloud method [39] and interviews [20],
to provide an additional channel of information. For in-
stance, there may be potential value in showing ERaCA
plots to study participants in a debriefing interview af-
ter a conventional user study session, using the plots as
prompts or visual aids to elicit remarks or insights from
participants about specific aspects of their experience.
Also like ERA, ERaCA relies on domain-specific ar-
tifact evaluation metrics to characterize artifacts in a
particular creative domain. A few standard metrics [40]
are widely used to evaluate 2D platformer game levels,
and metrics for several other domains [18, 41, 17] have
also been defined. However, there are many domains



for which appropriate metrics have not yet been devel-
oped, necessitating additional work before ERaCA can
be applied to these domains.

Finally, ERaCA can only be applied to MICIs where
the underlying generative model is capable of produc-
ing complete artifacts without human input. Fortunately,
many recently developed MICIs for a wide variety of
creative domains—including sketching [42], creature de-
sign [43], prose-level creative writing [44, 45], plot-level
storytelling [46], poetry [47], instrumental music [48],
songwriting [49], game design [50, 51], and level de-
sign [52]—follow this architectural pattern. However,
ERaCA may not be as readily applicable to the evalu-
ation of MICIs for domains such as physical crafts, in
which the generative models employed by MICIs often
cannot produce complete artifacts on their own due to
the need for human involvement in the physicalization
of generated designs [53, 54].

7. Conclusion

Expressive range coverage analysis (ERaCA) is a poten-
tially powerful new methodology for the evaluation of
mixed-initiative creative interfaces (MICIs). However, it
still needs to be evaluated at a greater scale; visually pol-
ished to improve visualization legibility; integrated with
other approaches to MICI evaluation, including conven-
tional user studies; and extended to many new creative
domains. We are excited to undertake many of these
efforts in the future and intend to adopt ERaCA in the
evaluation of our own co-creative systems going forward.
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