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Abstract
Motivated by the mixed initiative generative AI interfaces (MIGAI), we propose bridging the gap between StyleGAN3 and
human-AI co-creative patterns by augmenting the latent variable model with the ability of image-conditional generation. We
modify the existing generator architecture in StyleGAN3, enabling it to use high-level visual ideas to guide the human-AI
co-creation. The resulting model, StyleGAN-Canvas, can solve various image-to-image translation tasks while maintaining
the internal behaviour of StyleGAN3. We deploy our models to a real-time graphic interface and conduct qualitative human
opinion studies. We use the MIGAI framework to frame our findings and present a preliminary evaluation of our models’
usability in a generic co-creative context.
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Figure 1: A prototype interface encapsulating a StyleGAN-
Canvas model translating paper card layout into faces. The
user adjusts layouts while the model provides synchronous
generation based on visual similarity. A screen recording is
available at: https://youtu.be/9AsfsT8uXGY

1. Introduction
Generative adversarial networks (GANs) [1] have re-
cently been rapidly developed and have become a pow-
erful tool for creating high-quality digital artefacts. In
the case of images, modern approaches to improving
model quality have successfully brought the generated
outcomes from coarse low-resolution interpretations to
realistic portraits with high diversity [2] and visual fi-
delity [3]. Notably, introducing continuous convolution
in StyleGAN3 (alias-free GAN) [4] has enabled the gener-
ative network to perform equally well regardless of pixel
coordinates, paving the way for more flexible human-AI
interaction. Closely following the advances in deep gen-
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erative neural networks, StyleGAN models have been
found to be widely used as creativity support tools, cre-
ating unconventional visual aesthetics [5, 6, 7] and novel
human-AI co-creative experiences [8, 9, 10, 11]. This mo-
tivates research on human-AI co-creative applications,
offering insight into interaction possibilities between hu-
man creators and AI enabled by GANs [12].

Muller et al. [13] adapt notations introduced by Spoto
and Oleynik [14], presenting mixed initiative generative
AI interfaces (MIGAI), an analytical framework with 11
vocabularies of actions to describe a human-AI interac-
tion process. These actions are analysed into sequences
to form generic human-AI co-creative patterns. How-
ever, Grabe et al. [15] identify a gap between the MIGAI
framework and latent variable models such as GANs.
This is partially due to latent variable models’ deficiency
of ability in interpreting visual design concepts such as
sketches and semantic labels [16], leading to the left-out
of the action ideate [15], which describes using high-level
concepts to guide or shape the generation [5]. Therefore,
Grabe et al. [15] suggested tailoring the MIGAI frame-
work to fit co-creative GAN applications.

Motivated by the gap between GANs and human-AI
co-creative patterns, we suggest an alternative approach
to bridge the latent variable model, StyleGAN3, to the
co-creative framework by modifying the model’s techni-
cal functioning. Specifically, by augmenting StyleGAN3
with image-conditional generation ability, we enable it
to transform visual ideas into generation. This enables a
tightly-coupled human-AI interaction process that em-
phasises using high-level visual concepts to guide the
artefact and fulfil the action ideate [13], aligning with the
co-creative patterns mentioned in the MIGAI framework.
We limit our study to StyleGAN3 because its introduc-
tion of continuous convolution facilitates more flexible
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human inputs, which is a crucial feature required by our
approach.

Therefore, the primary aim of this research is to aug-
ment StyleGAN3 with image-conditional generation abil-
ity for a co-creative context. To achieve this, we adapt the
existing model architecture in StyleGAN3, which takes
a latent vector and a class label as the model’s input [4],
and propose an encoder network to extract features from
the conditional image. We also adapt the architecture
previously applied to various image-to-image translation
models [17, 18, 19] to connect the proposed encoder and
StyleGAN3’s generator. The modified model, StyleGAN-
Canvas, takes a latent vector and an accompanying image
as inputs to guide the generation. We show results from
our models trained for various image-to-image transla-
tion tasks while maintaining the internal behaviours of
StyleGAN3, providing more flexible and intuitive control
to ideate the co-creation.

To evaluate our model in a generic co-creative context,
we build a graphic interface to facilitate the real-time
interaction between users and the model. We conduct
qualitative human opinion studies, identify potential co-
creative patterns using the MIGAI analytical framework,
and present an exploratory human subject study on our
model. By aligning StyleGAN-Canvas with the actions
set in MIGAI, we hope to bring its capability into the
discussion of co-creative design processes, and provide
a preliminary insight into the unexplored interaction
possibilities enabled by StyleGAN.

The rest of the paper is structured as follows. We sum-
marise related works on StyleGAN, image-conditional
generation, and the co-creative pattern in Section 2. Then,
we present our modification to the model’s architecture
in Section 3. We conduct experiments on our models
and showcase the results and applications in Section 4.
Next, we evaluate the model in a co-creative context in
Section 5. Section 6 highlights limitations and future
studies.

2. Related Works

2.1. Alias-Free GAN
Our model architecture is extended from StyleGAN3
(Alias-Free GAN). This section summarises the back-
ground of StyleGAN and reviews the continuous con-
volution approach introduced by StyleGAN3 that enables
the translation and rotation equivariant feature.

StyleGAN [20] is a style-based generator with a regu-
larised latent space offering high-level style control over
image generation. The StyleGAN generator comprises
a mapping network 𝑀 that transforms the initial latent
code 𝑧 to intermediate latent code 𝑤 ∼ 𝑊 , and a syn-
thesis network 𝐺 with a sequence of 𝑁 synthesis blocks,

each comprising convolutions controlled by the interme-
diate latent code 𝑤, non-linearities, and upsampling, and
eventually produces the output image 𝑧𝑁 = 𝐺(𝑧0;𝑤).
Its high-level style control is achieved by adaptive in-
stance normalisation (AdaIN) [21], an approach to ampli-
fying specific channels of feature maps on a per-sample
basis. In practice, a learned affine transform is applied to
the intermediate latent space 𝑊 to obtain style codes 𝑦,
which are then used as scalar components to modulate
the corresponding feature maps before each convolution
layer. This architecture was then revised in StyleGAN2
[22] by replacing instance normalisation with feature
map demodulation and inherited by StyleGAN3.

In a later work, the continuous convolution approach
[23] implemented in StyleGAN3 (alias-free GAN) [4] has
dramatically changed the internal representations in the
synthesis network 𝐺. Signals in 𝐺 are operated in the
continuous domain rather than the discrete domain to
make the network equivariant, which means any opera-
tion 𝑓 in the network is equivariant to a spatial transfor-
mation 𝑡 (𝑡 ∘ 𝑓 = 𝑓 ∘ 𝑡). This eliminates positional refer-
ences; therefore, the model can be trained on unaligned
data, and the "texture sticking" behaviour in standard
GAN models is removed.

Moreover, the input of the synthesis network of Style-
GAN3 uses a spatial map 𝑧0 defined by Fourier features
[24] to precisely model the translation and rotation. The
spatial map 𝑧0 is sampled from uniformly distributed fre-
quencies, fixed after initialisation, and spatially infinite
[4]. Its translation and rotation parameters are calculated
by a learned affine layer based on intermediate latent
space 𝑊 . The spatial map 𝑧0 acts as a coordinate map
that allows later layers to grab on and therefore defines
the global transformations in the synthesis network [25].

2.2. Image-Conditional Generation
Methods for image-conditional generation aim to gen-
erate a corresponding image given an image from the
source domain, depicting objects or scenes in different
styles or conditions. Current solutions to this are usually
categorised under two approaches. The first approach
uses a linear encoder-decoder architecture [26], in which
the input image is encoded to a vector to match the target
domain, and then decoded into an output image. This
method was later extended to a generic framework for
various tasks, such as sketches and layout to image, facial
frontalisation, inpainting, and super-resolution [27].

The second direction uses conditional GANs [17]
with U-net architectures [28]. It uses a similar encoder-
decoder setting, but instead of encoding the input image
into a vector, it uses the residual feature maps from the
encoder as spatial information and propagates them to
the decoder through skip connections [29]. The propa-
gated features are concatenated with the outputs from



Figure 2: We build a residual feature encoder and adapt the StyleGAN3 generator. The main datapath consists of (i) 10
downsampling residual blocks (Section 3.1.1), each consisting of a mapped shortcut with a 1× 1 convolutional layer and bath
normalisation, and a downsampling block with two convolutional layers, an activation layer (Leaky ReLU), bath normalisations
and a clamping layer, (ii) a conditional mapping network (Section 3.1.2), (iii) StyleGAN3 mapping network, (iv) adapted
StyleGAN3 synthesis blocks (Section 3.2).

corresponding decoder layers. This method aims to pro-
vide the generator with a mechanism to circumvent the
bottleneck layer and allow spatial information to be shut-
tled from the encoder to the decoder [28]. Therefore, it
introduces a strong locality bias [26] into the generation,
which means each pixel in the output has a positional
reference to the input, and the general image structure
is preserved during translation. This method has been
extended for various tasks such as line-conditioned gener-
ation [19], layout-to-image synthesis [30], and semantic
region-adaptive synthesis [31].

2.3. Human-AI Co-Creative Pattern
Mixed Initiative Generative AI Interfaces (MIGAI) [13]
describe modes of interaction in which both human and
generative AI is engaged in a creative process. It aims
to frame subprocesses in a creative flow by an action
set with 11 vocabularies. A generic co-creative pattern
is identified using the MIGAI framework, in which the
AI system first learns a target domain, then the human
ideates a design concept to guide the artefact; subse-
quently, the human and AI system take turns to eval-
uate and adjust, eventually produce the outcome [15].
Our study focuses on ideating, a process of conceptual-
ising design solutions to high-level abstractions. Later
exploratory study emphasising the potential of enhanc-
ing the creative process through human-AI collaborative
ideation [16]. Methods for this have been advanced in di-
verse fields of application: co-creative game content [32],
collaborative text editing [33], and text-guided image
generation [34].

3. Extending StyleGAN to
Image-conditional Generation

The objective of our approach is to allow StyleGAN3 to
use images as conditions to guide the generation. This
section will discuss our modification to the current Style-
GAN3 architecture to address this objective.

As mentioned in Section 2.1, current StyleGAN3 mod-
els learn a mapping from a random noise vector 𝑧 to an
output image 𝑍𝑁 = 𝐺(𝑧). The modification aims to
extend the input from a vector 𝑧 to a conditional image
𝑥 combined with 𝑧, and generate 𝑍𝑁 that is close to
the corresponding ground truth 𝑦. To do this, we first
need a feature extraction encoder 𝐸 that extracts features
from 𝑥, then adapts the generator 𝐺 to produce outputs
based on the extracted features and the input vector 𝑧,
i.e. 𝑍𝑁 = 𝐺(𝐸(𝑥), 𝑧). Besides, the training objective
should push the generation closer to the corresponding
image 𝑦.

3.1. Feature Extraction Encoder
3.1.1. Adapted Residual Network

The feature extraction encoder 𝐸 employs an adapted
ResNet [29] architecture as the encoder backbone, which
has been previously used for feature maps extraction in
image-to-image translation works [27]. As shown in Fig-
ure 2 (left), the encoder network downsamples feature
maps to (𝑥/26, 𝑦/26), where 𝑥 and 𝑦 denote the width
and height of the input image. In addition, as StyleGAN
uses mixed-precision to speed up training and inferences



[24], we utilise similar techniques and reduce the pre-
cision to FP16 for the first five residual blocks in the
encoder. Consequently, it requires pre-normalisation and
an extra clamping layer that clamps the output of the
convolutional layers to ±29 [35].

3.1.2. Conditional Mapping Network

Previous works in StyleGAN encoder [27] have high-
lighted that replacing select layers of the extended latent
space 𝑊+ by computed latent codes can facilitate multi-
modal synthesis. And the extended latent space 𝑊+ can
be roughly divided into coarse, medium, and fine layers,
corresponding to different levels of detail and editability
[36]. This motivates us to add a conditional mapping net-
work as the epilogue layer of our residual feature encoder,
which uses the same mapping network architecture in
StyleGAN, but takes a flattened 512 vector sampled from
the encoder’s bottleneck and produces a replacement
latent space 𝑊 + ′. And 𝑊 + ′ is then concatenated
with a portion of the latent space 𝑊+ produced from
the original mapping network. This aims to facilitate
multi-modal generation.

3.2. Adapting Generator
As mentioned in Section 2.1, the StyleGAN3 generator
consists of a mapping network and a synthesis network,
our modification aims to connect its synthesis network
to extracted information from the feature extraction en-
coder.

We start by modifying the input layer in its synthesis
network. The original network utilises a fixed-size spatial
map 𝑧0 defined by Fourier features [24] as its input to
model translation and rotation parameters. However, the
entire input layer is left out, and we use feature maps
from the last layer of the encoder directly as the synthesis
network’s input. This lets the translation and rotation
parameters be inherited from the spatial feature maps.

Next, connections between the feature encoder aim
to provide precise structural information about input
images. A U-net [28] architecture is well-suited for prop-
agating high-level details from the encoder to the decoder
[26]. However, as mentioned in Section 2.1, experiments
on StyleGAN3 have demonstrated that high-level feature
maps in the synthesis network encode information in
continuous domains instead of discrete domains [4], re-
lying on skip connections to propagates discrete features
from the encoder may deviate from StyleGAN3’s inter-
nal generation behaviour. To tackle this, we first move
the concatenation node from the end of each synthesis
block to the point before the filtered non-linearities layer,
shown in Figure 2 (right). We also remove the padding
layers in each synthesis block to ensure the dimension
matches the skip connections. Additionally, research on

U-Net and its variants has demonstrated that a simplified
structure with fewer feature fusions can achieve reason-
able results [37, 38]. Therefore, we reduce the number of
feature fusions and limit connections to only the first 𝑁
layers. In practice, skip connections in these five models
each connect layer 𝑛− 𝑖 of the encoder to layer 𝑖, where
𝑛 is the total number of layers in the encoder, and 𝑖 is
limited to 𝑖 ∈ (0, 5]. The experiment in Section ?? will
show that 𝑁 = 5 is the best configuration that leads
to more stable training and efficient generation. This
reduction in the network maintains unification of the
network’s internal behaviour, while taking advantage of
the efficiency of U-shaped structural models.

3.3. Loss Functions
Standard StyleGAN loss function consists of the standard
GAN loss function (i.e., logistic loss) and regularisation
terms (i.e., 𝑅1). We incorporate the training objectives in
StyleGAN with pixel-wise distance and perceptual loss
that have been used in conditional GANs.

The model is trained using different combinations of
objectives at two different training phases. The first phase
starts from zero to the first 300k images, and this is also
the phase where the training images are blurred with
a Gaussian filter to prevent early collapses [4]. During
this phase, the pixel-wise loss 𝐿2 distance between input
images 𝑥 and target images 𝑦, logistic loss 𝐿𝐺𝐴𝑁 and
regularization terms 𝐿𝑟𝑒𝑔 as follows:

𝐿2(𝐺,𝐸) = E𝑥,𝑦,𝑧[‖𝑦 −𝐺(𝐸(𝑥), 𝑧)‖2] (1)

𝐿𝐺𝐴𝑁 (𝐷,𝐺,𝐸) = E𝑦[𝑙𝑜𝑔𝐷(𝑦)]

+E𝑥,𝑧[𝑙𝑜𝑔(1−𝐷(𝐺(𝐸(𝑥), 𝑧)))]
(2)

𝐿𝑟𝑒𝑔(𝐸,𝑀) = E𝑥,𝑧[‖𝐸(𝑥)−�̄�‖2+‖𝑀(𝑧)−�̄�‖2] (3)

where 𝐺 and 𝐷 denote the generator and the discrimina-
tor, 𝐸 denotes the feature encoder, and 𝑀 denotes the
mapping network in the generator. Then, the training
loss 𝐿𝑝ℎ𝑎𝑠𝑒1 is defined as:

𝐿𝑝ℎ𝑎𝑠𝑒1(𝐷,𝐺,𝐸) = 𝜆1𝐿2(𝐺,𝐸)

+𝐿𝐺𝐴𝑁 (𝐷,𝐺,𝐸) + 𝐿𝑟𝑒𝑔(𝐸,𝑀)
(4)

The second phase starts after the training reaches 300k
images. We add a perceptual loss 𝐿𝑉 𝐺𝐺 utilising a pre-
trained VGG19 [39] network, which has been used in
the training of previous conditional GANs and has led to
more finer details in the resulting images [18], defined
as follow:

𝐿𝑉 𝐺𝐺(𝐺,𝐸) = E𝑥,𝑦,𝑧[‖𝐹 (𝑦)−
𝐹 (𝐺(𝐸(𝑥), 𝑧))‖2]

(5)



Then, the phase 2 loss is then calculated as follows:

𝐿𝑝ℎ𝑎𝑠𝑒2(𝐷,𝐺,𝐸) = 𝜆1𝐿2(𝐺,𝐸) + 𝜆2𝐿𝑉 𝐺𝐺(𝐺,𝐸)

+𝐿𝐺𝐴𝑁 (𝐷,𝐺,𝐸) + 𝐿𝑟𝑒𝑔(𝐸,𝑀)
(6)

where𝐹 denotes the pre-trained VGG19 feature extractor.
𝜆1 and 𝜆2 are constant numbers used to weigh the loss
parameters, which vary across different training data and
configurations.

4. Experiments and Applications
In the following Section 4.1, we analyse the effectiveness
of the U-net proposed in Section 3.2 by a set of ablation
studies. Next, in Section 4.2, we demonstrate the training
process of our model for several image-to-image trans-
lation tasks with different datasets and showcase their
results. We also experiment with scaling the model to
larger canvases in Section 4.3. Finally, we build a graphic
interface that implements our models with a set of trans-
formation filters in Section 4.4.

Figure 3: Ablating the skip connections

4.1. Analysis of The Skip Connections
Methodology. Section 3.2 proposed reducing the num-
ber of skip connections to only the first 𝑁 layers. To ver-
ify the feasibility of this design and find the most effective
configuration of 𝑁 , we first trained six models on Flickr-
Faces-HQ (FFHQ) [20] dataset with 512×512 resolution
for an ablation test [40] on the skip connections, which
is a method to investigate knowledge representations in
artificial neural networks by disabling specific nodes in a
network. We use inversion tasks [41] as the training goal,
in which the models are trained to reconstruct a given
image without translation, aiming to test the efficiency
of the encoder. Skip connections are installed between
the encoder’s last 𝑁 layers and the synthesis network’s
first 𝑁 layers, where 𝑁 progressively reduces from 5 to 0
in these six models. The resulting outputs are compared
across six models to decide the final configuration.

Results. Figure 3 (left) shows the results of the ablation
test for the 𝑁 = 5 to 𝑁 = 2 models trained on 1680k
samples. The rest of the two models (𝑁 = 1 and 𝑁 =
0) are unable to converge to sensible results after 800k
samples and were therefore aborted. The results show
notable improvements when increasing the number of
skip connections, especially in preserving details such as
background, hands, unique make-up and even the details
in hairs. Therefore, 𝑁 = 5 is decided as the final setting.

4.2. Conditional Image Synthesis and
Editing

Methodology. Conditional image synthesis uses
image-conditional models to generate image 𝑍 corre-
sponding to the ground truth image 𝑦, given input con-
dition image 𝑥. We tested our architecture on three
conditional image synthesis tasks: (i) generating face
images from blurry images, (ii) generating face images
from canny edges, and (iii) generating realistic landscape
images from blurry images.

First, the ground truth 𝑦 was pre-processed into pro-
cessed condition 𝑥. In deblurring models, the pre-process
pipeline is a resizing layer that scales the resolution of 𝑦
to 256× 256, and a Gaussian filter with sigma 𝜎 = 28
that process resized 𝑦 to blurred images as condition 𝑥. In
the edge-to-face model, the resolution of 𝑦 is first resized
to 256× 256, and then applying a Canny edge detector
[42] to process resized 𝑦 to edges as condition 𝑥. 𝑦 and
𝑥 are provided to the training as paired data. After the
models were trained, the same pipelines were applied to
pre-process input 𝑥′ for inference. The training process
is illustrated in Figure 4 (top).

The dataset used for face generation models was Flickr-
Faces-HQ (FFHQ) [20], and the dataset used for land-
scape photos generation was Landscapes High-Quality
(LHQ) [43], both with 512 × 512 resolution. We used
StyleGAN3-R, the translational and rotational equivari-
ant configuration of StyleGAN3, as the generator back-
bone for the FFHQ dataset; and StyleGAN3-T, the trans-
lational equivariant configuration of StyleGAN3, as the
generator backbone for the LHQ dataset. The training
configuration was identical to StyleGAN3.

Results. The deblurring model on the FFHQ dataset
was trained with 3700k samples, and the deblurring
model on the LHQ dataset was trained with 6700k sam-
ples. We compared ground truth samples 𝑦, conditions
𝑥, and generation outcomes 𝑍𝑁 in Figure 5 and Figure 6.
The edge-to-face model on the FFHQ dataset was trained
with 3700k samples. In Figure 7, we compared ground
truth samples 𝑦, conditions 𝑥, and generation outcomes
𝑍𝑁 with three randomly selected latent vectors for multi-
modal generations.



Figure 4: During training, target images are processed into condition, the model generates fake images, and the fake images
and the target images are used to calculate the loss.

Figure 5: Results of our model for deblurring on FFHQ 512×
512 (left: ground truth samples, middle: processed conditions,
right: generations

Figure 6: Results of our model for deblurring on LHQ 512×
512 (left: ground truth samples, middle: processed conditions,
right: generations

In addition, the canny edges model provides an alter-
native approach to local editing. Modifying edges in the
condition image allows the model to alter semantical ele-
ments in the generation. Illustrated in Figure 4 (bottom),
the modified conditions can be obtained by combining
and adapting existing conditions from other images. For
example, in Figure 8, we superimposed edges processed
from other images to the original edges to add hair fringe,
glasses and smile; we painted on the original edges to
modify eyes and add sunglasses.

4.3. Large Canvas
As mentioned in Section 3.2, the padding layers in the
synthesis network are removed, and the entire generator
does not have unintentional positional references with

Figure 7: Results of our model for edge-to-face model on
FFHQ 512×512 (ground truth samples, processed conditions,
and three generations with different latent vectors

Figure 8: Results of our model for edge-to-faces on FFHQ,
and local editing

absolute positional references [44], we hypothesised that
our modified architecture induced an extendable genera-
tion canvas that can be enlarged after trained on a fixed
resolution, without additional training required. There-
fore, we enlarge the input resolution to test the model’s
ability on a larger canvas.

The model for landscape photo generation was trained
on the dataset with 512× 512 resolution, taking inputs
with 256×256 resolution. To enlarge the generation can-
vas, we doubled and tripled the width of inputs, expand-
ing their resolution to 1024× 256 and 768× 256. Then,
the expanded inputs were taken directly into the gener-
ator and convolved by each convolutional layer. There-
fore, the expected output resolutions are 2048×512 and



Figure 9: Examples of results with 512× 2048 / 512× 1536 image generated from model originally trained on 512× 512
dataset. More results can be accessed from https://github.com/jasper-zheng/StyleGAN-Canvas

1536× 512. Additional training is not required during
the experiment.

Figure 9 shows the resulting generations. While
the outputs are expanded up to four times larger than
the original canvas, the generation quality remains un-
changed. This ensures that the input canvas can be flex-
ibly expanded when the models are implemented into
user interfaces.

4.4. User Interface
Implementation. The deblurring models were de-
ployed to a graphic user interface. The models were
running on a cloud server. We used Flask and Socke-
tIO for bi-directional communications between the web
client and the server. The generation runs in real-time at
roughly ten frames per second on an NVIDIA RTX A4000
GPU. The code for our implementation is available at
https://github.com/jasper-zheng/realtime-flask-model.

Combining network bending. In addition to the
baseline model, the generation system is implemented
with network bending [45], an approach to alter a trained
model’s computational graph by inserting transformation
filters between different convolutional layers, allowing
the model to generate novel samples that are diverse from
the training data [46]. We used the clustering algorithm
presented by Broad et al. [45] to group spatially similar
feature maps in selected layers and allow the transfor-
mation filters to be inserted into specific groups. We
trained softmax feature extraction CNNs for each layer
and clustered each flatten layer by the k-means algorithm.
However, different from the implementation in Broad et
al.’s work, we increase the length of the flatten vector

from 10 to 32 ( �⃗� ∈ 𝑅32) to confront larger numbers of
channels in StyleGAN3-R.

Interface design. Figure 10 shows a screenshot of the
deployed system. The interface allows inputs from a web-
cam or locally selected image files (top left). The interface
allows users to pause, resume generation, and switch the
input between the webcam and local files. Users can in-
sert transformation filters into certain groups in certain
layers. The list on the bottom left side presents layers
available for network bending operations. Once a specific
layer is selected, the system shows current clusters of
feature maps in the layer. Users can regenerate clusters
according to feature maps from the current frame. Then,
users activate the ‘route’ button to apply transformation
filters to the cluster. The system provides basic transfor-
mation filters, including erosion and dilation, multiply,
translations, rotation, and scale.

Figure 10: A screenshot of our interface.

https://github.com/jasper-zheng/StyleGAN-Canvas
https://flask.palletsprojects.com/en/2.2.x/
https://socket.io/
https://socket.io/
https://github.com/jasper-zheng/realtime-flask-model


5. Human Subjects Study and
Evaluation

This section presents a human subjects study to evaluate
our models in a human-AI co-creation context. The study
uses a thematic analysis approach to identify potential
co-creative patterns defined by the MIGAI framework
[13] that underlies the interaction.

5.1. Methodology
In the user study, we asked six participants to use the
generation interface described in Section 4.4. For the
webcam inputs, coloured paper cards and scissors were
available to the participants. Participants were asked
to arrange and layout paper cards in front of a webcam
pointing to a paper canvas, aiming to control the gen-
eration until it reached something they liked. Besides,
the transformation filters were also available to fine-tune
the creation further. Models used in Section 4.2 are avail-
able to the participants, including the deblurring model
and the edge-to-face model trained on Flickr-Faces-HQ
(FFHQ) [20], the deblurring model trained on Landscapes
High-Quality (LHQ) [43].

The experiment followed the qualitative research pro-
cedure described by Adams et al. Adams et al. [47]. Six
participants were divided into two groups of three. We
conducted the study on the first group and ran an analy-
sis to emphasise issues raised by the participants based
on their frequency and fundamentality, leading to tenta-
tive findings. Then, the interview questions are revised
for the second group to probe and grow these findings.
The study was divided into two parts, each lasting 15
minutes. The first part asked participants to familiarise
the interface and explore the system components. The
second part asked the participant to create a work they
liked. Observation is conducted while participants inter-
act with the framework, and a 5-minute semi-structured
interview with open-ended questions follows each part
of the experiment.

Participants were questioned on their attitudes regard-
ing this form of interaction, the creation process, their
generation outcomes, and the differences in their per-
ceptions of different models. We loosely followed the
interview template during the interviews while ensuring
these four topics were covered.

Figure 11 shows some examples of works created by
the participants.

5.2. Analysis
In this section, we use the thematic analysis [48] method
to aggregate comments collected from the interview, aim-
ing to identify critical factors influencing the interaction.

Figure 11: Examples of works created by participants

We used the MIGAI analytic framework [13] to frame the
human-AI co-creative patterns.

5.2.1. Learn

The action learn in the MIGAI framework describes the
AI model using training data to construct its knowledge,
usually involving the choice of datasets, model archi-
tectures, and training configurations. Most participants
used the model trained on the landscape dataset in the
end. When questioned on the reason for this decision,
they suggested the surprising, unexpected results pro-
duced by the landscape model are more likely to be ac-
cepted by their visual aesthetic. Although both models
can create unrealistic imagery, distortion and oddities on
human faces may easily lead to uncanny feelings and,
more importantly, negative ethical issues such as bias
and offences. Therefore, the choice of training data is
critical for co-creation.

5.2.2. Ideate

The action ideate describes the process of using high-
level concepts to guide the generation. We collected
comments aggregated around this process. Some posi-
tive comments indicate that creating shapes using paper
cards is an intuitive generation process. Whereas some
negative comments suggest that the lack of controls in
details (e.g., textures in the landscapes, details of the fa-
cial elements) leads to confusion and complaint. Most
participants pointed out that they would use this form of
generation as inspiration, giving them a high-level sketch
developed from their ideated concept. Alternatively, they
may treat it as a playful experience or simply in pursuit of
an abstract visual effect. However, if the generation aims
to create a serious piece of work, they would eventually
switch to more stable methods with lower-level control
to refine the work, such as Photoshop or CAD software.
This is because, in this case, they want to be manually in
charge of finer details such as lighting and textures.



5.2.3. Adapt

The action adapt describes adjusting existing artefacts.
During the study, we observed that participants primar-
ily focused on exploring the outcome from the compu-
tational agent by arbitrarily arranging the paper cards.
When they reach a layout that triggers interesting results,
they iteratively adjust the arrangement until achieving
a satisfying result. Some participants tried to tackle the
lack of control by utilising other pre-processing or post-
processing processes. Figure 12 illustrates an example
of an action that attempts to fix the oddity by slightly
warping the intermediate image in other image editing
software. Figure 13 illustrates a sequence of editing per-
formed on intermediate condition images to intentionally
create unrealistic and novel outcomes. The edges were
edited and assembled before the generation using Photo-
shop, and then uploaded to the interface as inputs. The
user evaluated the current outcome, and then iteratively
fine-tuned the edges according to their preferences.

Figure 12: Slightly warping the intermediate image fixes the
peculiar effect in the waves.

Figure 13: Editing, assembling the condition images to inten-
tionally create unrealistic and novel outcomes

5.2.4. IterativeLoop

The MIGAI framework uses IterativeLoop to describe hu-
mans reflectively learning from the co-creative process.
We observed that some participants might memorise use-
ful patterns of shapes and colours that may trigger satis-
factory results, and later use the paper card to reproduce
these patterns. Some participants describe this process
as a way to learn the preferences of the AI model to steer
the co-creation through reflection.

5.3. Discussion
The motivation of this paper was to augment style-based
GAN models into a co-creative context. By extending the
StyleGAN model to image-conditional generation, these
models allow human agents to ideate a high-level con-
cept of the artefacts, like blurred arrangement or edges.
The flexibility of input and the semantically meaningful
control are critical features for effective co-creative ex-
periences. Meanwhile, to create a sense of a "cooperated
partner", the computational agent needs to maintain a
certain level of unpredictability, and AI’s contribution
needs to partly influence the human agents’ decision [49].
Therefore, the co-creative process balances machine au-
tonomy and human creativity. Our current results are
good indications that human agents act as a director
who steers the model by organising and reusing learned
knowledge in the computational agent. While further
studies on the model architecture may improve the gen-
eration quality, the current results in this research show
that bridging StyleGAN3 to the co-creative context is pos-
sible. Furthermore, it could be employed for novel and
unique co-creative experiences. For example, Figure 14
shows an interactive installation with webcam inputs
that produce 704× 1280 images in real-time.

Figure 14: An interactive installation implementing our
framework, the model runs in real-time with webcam input
at 10fps.



6. Conclusion
In this work, we augmented StyleGAN3 with the ability
of image-conditional generation, enabling it to turn high-
level visual ideas into generation. This augmentation
aligned latent variable models with the co-creative pat-
terns mentioned in the MIGAI framework and brought
StyleGAN3 into a co-creative context. We adapted the
existing model architecture and proposed an encoder net-
work to extract information from the conditional image.
We demonstrated the modified architecture, StyleGAN-
Canvas, on various image-to-image translation tasks with
different datasets. In addition, we deployed our models to
a graphic interface to facilitate the real-time interaction
between users and the model. To evaluate our models
in a co-creative context, we conducted qualitative hu-
man opinion studies and identified potential co-creative
patterns using the MIGAI analytic framework.

6.1. Limitation and Future Works
An overall criticism was the need for more interpretable
control in the system. While the input image acts as
a blueprint for the generation, the user also needs pre-
cise control over the details when using the model as a
creative tool. This leads us to rethink the design of the
intermediate representation. Our framework currently
only implements deblurring models for the experiment,
however, it might be more useful to use intermediate
representations that encode more detailed information
(e.g., boundary maps or edges) like the interactive demos
in pix2pixHD.

Besides, the proposed architecture can also be im-
proved in technical aspects. Our approach proposes an
alternative for extending StyleGAN models to image-
conditional generation. Although it has demonstrated
its potential in solving several image-to-image transla-
tion tasks, the detailed architecture still needs further
investigation and refinement to improve the generation
quality. Our model architecture utilises the equivariant
generator in StyleGAN3. However, our feature extrac-
tor still needs to be rotation equivariant. Therefore, the
generation may suffer when the rotation is not encoder.
Figure 15 show an example of failure where the encoder
does not preserve the rotation. It would be beneficial to
make the feature encoder equivariant in future work.

Figure 15: encoder failed to extract the rotation

6.2. Ethical Considerations and Energy
Consumption

Potential negative societal impacts of images produced
by GAN [50] were considered throughout the project.
The models trained on the FFHQ dataset are for purely
academic purposes, and its interactive prototype will not
be publicly distributed by any means. Model trainings
used approximately 300 hours of computation on A100
SXM4 80GB (TDP of 400W). Total emissions are estimated
to be 25.92kg 𝐶𝑂2, as calculated by MachineLearning
Impact calculator [51]. Paper cards in the experiments
were limitedly allocated to participants, reused during
and after the experiments.
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